Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We investigate online network topology identification from smooth nodal observations acquired in a streaming fashion. Different from non-adaptive batch solutions, our distinctive goal is to track the (possibly) dynamic adjacency matrix with affordable memory and computational costs by processing signal snapshots online. To this end, we leverage and truncate dual-based proximal gradient (DPG) iterations to solve a composite smoothness-regularized, time-varying inverse problem. Numerical tests with synthetic and real electrocorticography data showcase the effectiveness of the novel lightweight iterations when it comes to tracking slowly-varying network connectivity. We also show that the online DPG algorithm converges faster than a primal-based baseline of comparable complexity. Aligned with reproducible research practices, we share the code developed to produce all figures included in this paper.more » « less
-
null (Ed.)We consider network topology identification subject to a signal smoothness prior on the nodal observations. A fast dual-based proximal gradient algorithm is developed to efficiently tackle a strongly convex, smoothness-regularized network inverse problem known to yield high-quality graph solutions. Unlike existing solvers, the novel iterations come with global convergence rate guarantees and do not require additional step-size tuning. Reproducible simulated tests demonstrate the effectiveness of the proposed method in accurately recovering random and real-world graphs, markedly faster than state-of-the-art alternatives and without incurring an extra computational burden.more » « less
-
The growing success of graph signal processing (GSP) approaches relies heavily on prior identification of a graph over which network data admit certain regularity. However, adaptation to increasingly dynamic environments as well as demands for real-time processing of streaming data pose major challenges to this end. In this context, we develop novel algorithms for online network topology inference given streaming observations assumed to be smooth on the sought graph. Unlike existing batch algorithms, our goal is to track the (possibly) time-varying network topology while maintaining the memory and computational costs in check by processing graph signals sequentially-in-time. To recover the graph in an online fashion, we leverage proximal gradient (PG) methods to solve a judicious smoothness-regularized, time-varying optimization problem. Under mild technical conditions, we establish that the online graph learning algorithm converges to within a neighborhood of (i.e., it tracks) the optimal time-varying batch solution. Computer simulations using both synthetic and real financial market data illustrate the effectiveness of the proposed algorithm in adapting to streaming signals to track slowly-varying network connectivity.more » « less
-
null (Ed.)The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods.more » « less
An official website of the United States government
